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The problem of calculating approximate wave functions for an excited state, which is nof
the lowest of a symmetry species, has been investigated for the first excited o-state of the HeH*2
ion. The results of calculations using explicitly orthogonalized variational trial functions are
compared with results based on the linear combination of molecular orbitals (LCMO) procedure,
and with the exact values. Our values of the electronic energy and of the dipole moment are in
good agreement with the exact values.

Das Problem der Berechnung eines angeregten Zustands, der nicht der niedrigste seiner
Rasse ist, wird am Beispiel des ersten angeregten o-Zustands von HeH*?2 diskutiert. Energien,
Dipolmomente und Ubergangsmomente, erhalten mit nichtorthogonalisierten und ortho-
gonalisierten Variationsstérungsfunktionen 0. und 1. Ordnung und mit LCMO-Funktionen,
werden mit den exakten Werten verglichen.

On étudie le probléme du calcul d’une fonction d’onde approchée pour un état excité qui
n’est pas le plus bas pour sa classe de symétrie, sur 'exemple du premier état ¢ excité de
Pion HeH*2, Les résultats du calcul par utilisation de fonctions d’essai variationnelles ex-
plicitement orthogonalisées sont comparés 3 ceux fondés sur un procédé de combinaison
lindaire des orbitales moléculaires (LCMO) et aux valeurs exactes. Nos valeurs pour I’éner-
gie électronique et le moment dipolaire sont en bon accord avec les valeurs exactes.

1. Introduction

In some recent work [4, 5, 6 (1, 2, 3)] we have described a variation-perturba-
tion procedure for caleulating accurate approximate molecular orbitals for a
number of states of Hy and HeH*2, Qur procedure consists of two parts. First,
we select according to the prescription of DALGARNO and Lewis [7] a two-centre
approximate funetion wy(x) say, of united atom type, which contains an adjustable
charge parameter « to be chosen later. This single-parameter function serves as
the zero-order (unperturbed) approximation of conventional Rayleigh-Schridinger
perturbation theory, and we calculate the first-order correction y,(x) say, directly.
With the zero- and first-order funections gy(«) and ;(x) known, we next construct
a two-parameter variational trial function,

Yo, 1) = Pol) + 7 pa(x) (1)
and seek the optimum values of the charge parameter « and the linear parameter
7.
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Our previous calculations were concerned with states which are the lowest of
some symmetry, so that the choice of parameters according to the usual variational
criterion has always led to calculated (approximate) energies which are upper
bounds on the exact energies of the corresponding states. For excited states, the
variational procedure requires modification, whereas the choice of ypy(x) and the
calculation of () proceeds as before.

2. The 2po State

For the 2po state, we choose the (unnormalized) trial function

V7 (2p0) = xo(B) + 21(B) (2)
where y4(f) is the united atom approximation
%olf) = A exp (— BRA) = Ap. exp (— gA) , say. 3)

Here, as in our earlier work, the internuclear separation is 2R a.u. while 4 and p
are the usual confocal elliptic coordinates [4]. The calculation of y,(8) now proceeds
exactly as for the 2poy, state of HF [4] and we find

%1(8) = %o(B) [a +£— +op + dp? + % + fA - glnd + hin(2 + 1)} . )

The coefficient a appearing in Eq. (4) is determined from the normalization
condition

$xalB) | xo(BY> =0, (5)

and the remaining coefficients are listed in Table 1. This solution differs from the
corresponding solution for the 2poy, state of HF only in the terms linear in y, which
arise directly from the lack of nuclear symmetry in HeH+2,

Table 1. Values of the Constants in Hq. (4)

L~}
]
v &

¢ =

R
)

d = -EO—(q2 - 2 B, R?
e=[6E, R*5 — g% + 45 qR + 2 ¢*(4 ¢2 — 15)]/20 ¢*
=By R%q
g=—-2qe
h=[2E RT¢*+15) + 16qR(2¢* + 3) — 6 ¢2(2 ¢® + 5)]/10 ¢*
where ¢ = SR and E, is the first order energy

3. Orthogonality

The exact wave functions ¥° and ¥* for the 1so and 2po states respectively,
satisfy

PO | WLy =0 (6a)
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and

PO H | P =0 (6b)

where H is the Hamiltonian of the system. Although the trial function ¥} of Eq. (2)
for the 2po state and the corresponding trial function, namely

PR(150) = yo() + 1 ¥y(x) (7)

for the 1so state [6 (1)] do not satisfy these relations, the united atom approxima-
tions yy(o) and x4(f) are orthogonal for all values of « and §, but it is easily verified
that {y, | H | o> is not zero.

4. Energy Calculations with an Unorthogonalized 2po State Wave Funection

If yo(x) were a good approximation to the exact ground-state eigenfunction
P, we should expect reasonable energy values for the 2po state to result from
caleulations using y,(B), with § suitably chosen. Unfortunately, when §=1.5
(the united atom value for this state) the calculated energies are much too low over
almost the entire range of R-values (see Table 3). This is a reflection of the in-
aceuracy of yy(«) as a representation of ¥° which has been noted previously [6 (1)].

The inclusion of y,(f) (again with § = 1.5) leads to much more satisfactory
energies over most of the range, implying that the approximate wave function
including the first-order correction is more nearly orthogonal to the exact ground-
state solution ¥9. The energies calculated with ¥}(8 = 1.5) are presented in
Table 3 and are generally in close agreement with the exact values [2, 8] up to
R = 1.75 even for those few R-values where the approximate energies are still
not bounds. For larger R-values, the differences become appreciable, but the
accuracy of our approximation for moderate R-values is gratifying, since y,(f) is
chosen to display the correct behaviour in the limit as B — 0.

Variation of § can only lower the energies still further, and it is therefore clear
that we must construct a properly orthogonalized wave function to achieve bounds
on the energy.

b. Energy Calculations with Orthogonalized 2po State Wave Funetions
5.1 Choice of the Charge Parameters o and f
We have calculated o« and § by solving the second order secular equation, which
results from variation of the linear parameters in the “zero order” trial wave

function

Dy = agy(x) + byo(B) - (8)
In principle, it is possible to determine fwo pairs of values which separately optimize
the energies of the 1so and 2po states. However, we found that one eigenvalue of

the secular equation is sensitive only to variations in « and the other eigenvalue is
sensitive only to variations in 8. The resulting values of & and g are listed in Table 2.

5.2 The 1sc State Wave Funclion

For the lower 1so state, we have calculated energy bounds by optimizing the
total energy through third order by varying # in the linear trial function (7). The
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Table 2. Values of the Parameters for the 1sc and 2po States of HeH 2

R« B 7 ko k, ! m

0.125 2779 1534 1.020 5.28 (-
0250 2.527 1.621 1.077 5.23 (-
0.375 2334 1.727 1450 499 (-
0.500 2189 1.810 1.227 4.68 (- 564 (—
0.750 1.989 1.852 1.357 419 (- 6.88 (—

1) 1.26 (-
1)
1)
0y
1)
1.000 1.852 1.791 1.428 3.85 (-1) 7.22 (-
1)
1)
1)
1)
1)

345 (-
463 (-

249 (-5) 17.56 (-3)
3.00 (—4) 229 (-3)
9.54 (—4) 3.84 (-2)
141 (-3) 5.26 (-2)
-8.24 (-3) 17.85 (-2)
-3.51 (-2) 9.78 (-2)
~6.88 (~2) 1.10 (1)
977 (~2) 149 (-1)
147 (-1)  1.27 (1)
—1.29 (-1) 1.34 (-1)
~1.34 (1) 1.52 (-1)

1.250 1.745 1.697 1.439 3.62 (-~ 6.83 (-
1.500 1.656 1.599 1.410 3.48 (—~ 6.03 (-
1.750 1.579 1.508 1.360 3.41 (- 5.00 (-~
2.000 1.511 1.425 1.300 3.39 (- 3.82 (-
2.500 1.395 1.286 1477 3.46 (- 1.07 (-

oo

a The internuclear separation is 2 E.
» 528 (-1) = 5.28-107%

resulting values of 77 are listed in Table 2, and the corresponding energies in Table 3.
These energies differ very little from the best values obtained earlier [6 {1)] with
slightly different values of x and 7, and it is clear that the approximate function
¥? is an adequate representation of the exact ground state function ¥° only up to
R =15.

5.3 Bxplicitly Orthogonalized 2po State Wave Funciions

The unnormalized function

O =V + k) ©)
where
k=~ V| EDIPLPD (10)
is orthogonal to ). Here, ¥'? is given by Eq. (7) and ¥} is given either by
Y= 18, [with k = &, in Eq. (9)] (11a)
or by
Vi = %) + 2(f) . [with k =k, in Eq. (9)]. (11b)

The energies calculated with these @] are presented in Table 3. They are all
bounded by the exact values, but the zero order values are very inaccurate. Much
better accuracy results from the first order calculations, but it is clear that we have
obtained upper bounds at the price of a loss of accuracy over most of the range of
R-values. The effect of orthogonalization may be seen to be small from the values
of the constants k, and %, (see Table 2), and by comparing the energies calculated
with orthogonalized trial functions and with the corresponding unorthogonalized
trial functions (i.e., with the same values of ). These values are also included in
Table 3.

This procedure of explicit orthogonalization towards approximate ground state
eigenfunctions was followed in earlier purely variational calculations on the
diatomic ions [3, 7, 9].
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5.4 Linear Combination Wave Functions
The unnormalized linear combinations of molecular orbitals (LCMO)

D) =P+ 17} (12)
and

Ol =P 4 m PP (13)

determined from solutions of a secular equation, are orthogonal for all values of
« and B.

Values of [ and m are presented in Table 2, and their small magnitudes indicate
that @ is dominated by ¥} and @} by ¥}. The effect of the mixing is, as usual, to
lower the 1so energies and to raise the 2pc energies. These energies are presented
in Table 3. '

Judging by the energy criterion alone, @) is a slightly more accurate representa-
tion of the ground-state wave function than %7, whereas the LCMO function @} is
apparently less reliable than the explicitly orthogonalized @} of Eq. (9). It should
be noted, however, that the energy differences between these approximations are
generally much smaller than the discrepancies with the exact values. The most
acourate energy values are actually obtained with the unorthogonalized W7}, but they
are not all bounds.

6. Other Molecular Properties: Accuracy of the Wave Funetions

The accuracy of the various approximate functions and the effects of ortho-
gonalization have been investigated further by calculating dipole moments for both
1so and 2po states, and transition matrix elements for the 1s¢ — 2po dipole transi-
tion. The calculated values are presented in Table 4 together with values calculated
using the exact wave functions [{1, 9, 10].

The accuracy of our values of the dipole moments for the 2po state provides
some indication of the quality of the approximate solutions for this state, but it is
clear that none of the 1s¢ solutions is satisfactory except at very small E-values.
We wish to emphasize that the most accurate dipole moments were calculated
with the LCMO functions and that the unorthogonalized funections give slightly
better results than the explicitly orthogonalized wave functions. This is in marked
contrast with the energy calculations described above, and serves to underline once
more the inadequency of the energy criterion as the sole test of the accuracy of an
approximate wave function.
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